منابع مشابه
How Sharp Is Bernstein’s Inequality for Jacobi Polynomials?
Bernstein’s inequality for Jacobi polynomials P (α,β) n , established in 1987 by P. Baratella for the region R1/2 = {|α| ≤ 1/2, |β| ≤ 1/2}, and subsequently supplied with an improved constant by Y. Chow, L. Gatteschi, and R. Wong, is analyzed here analytically and, above all, computationally with regard to validity and sharpness, not only in the original region R1/2, but also in larger regions ...
متن کاملA sharp weighted Wirtinger inequality
We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality
متن کاملThe Sharp Energy-capacity Inequality
Using the Oh–Schwarz spectral invariants and some arguments of Frauenfelder, Ginzburg, and Schlenk, we show that the π1-sensitive Hofer– Zehnder capacity of any subset of a closed symplectic manifold is less than or equal to its displacement energy. This estimate is sharp, and implies some new extensions of the Non-Squeezing Theorem.
متن کاملA sharp concentration inequality with applications
We present a new general concentration-of-measure inequality and illustrate its power by applications in random combinatorics. The results nd direct applications in some problems of learning theory. The work of the second author was supported by DGES grant PB96-0300
متن کاملA Sharp Inequality and Its Applications
We establish an analog Hardy inequality with sharp constant involving exponential weight function. The special case of this inequality (for n = 2) leads to a direct proof of Onofri inequality on S.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2013
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.05.041